Combinatorics

( Eva Boháčová, Soňa Krempaská )

- ( not a definition ) the branch of mathematics concerned with the selection, arrangement, and operation of elements within sets.

Combinatorial theory deals with existence ( does a particular arrangement exist? ), enumeration ( how many such arrangements are there? ) and structure ( what are the properties of each arrangement? ).
It has applications in such diverse areas as managing computer and telecommunication networks, predicting poker hands, dividing tasks among workers, and finding a pair of socks in a drawer.
Because combinatorics deals with specific problems by limiting itself to ( not necessarily )  finite collections of discrete objects, as opposed to the more common, continuous mathematics, it has neither standard algebraic manipulations nor a systematic problem-solving framework. Instead it relies upon the logical analysis of possibilities for each new problem, breaking the problem into a series of steps and substeps. 
Factorial

- notation: 

n!
- definition: 
let  n ( N .  n! ( n ( ( n ( 1 ( ( ( n ( 2 (( ... ( 2 ( 1
                                 
0! = 1

Combinatorial symbol ( binomial number, coefficient )

- definition: 
let k, n ( Z, let 0 ( k ( n. Then the combinatorial symbol n above k is
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BASIC PROPERTIES OF COMBINATORIAL SYMBOLS:
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Symmetry:                                    Sum rule:
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Pascal triangle


        VALUES:
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n = 3 ...            
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n = 4 ...      
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Binomial formula

( A ( B (n ( 
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Notation:  for sets X,Y :   (X( ( (Y(  means that the set X has the same number of elements 


             as the set Y
                                        (X( ( (Y(  means that the set X has less or the same number of 

                                                          elements as the set Y
                                        (X( ( (Y(  means that the set X has less elements than the set Y
      if X is finite then    (X( ( n  means that the set X has n elements                                    

                                   (X( ( n  means that the set X has less than n elements or n elements

                                   (X( ( n  means that the set X has less than n elements


Tree diagram ( logical tree )

· vertices: the results of single choices.

· starting vertex: the root; end vertices: leafs.

· edges: connect the results of consecutive single choices within one arrangement.

· branches: full arrangements that are the results of manifold choices; two distinct branches can have a common initial segment but they can never join again after their ramification.

Principles (rules)

· Sum rule

· Product rule

· Pigeonhole principle

· Inclusion-exclusion principle
Sum rule

-  if we have a ways of doing something and b ways of doing another thing and we        

    cannot do both simultaneously, then there are a + b ways to choose one of the actions.

-  in general: size of the union of a finite collection of pairwise disjoint finite sets is the      

sum of sizes of these sets. That is, if M1, M2, ..., Mn are pairwise disjoint sets  ( Mi ( Mj ( ( for i ( j ), then we have:

(M( ( (M1 ( M2 ( ... ( Mn( ( (M1( ( (M2( ( ... ( (Mn( .

Product rule

-  if we have a ways of doing something and b ways of doing another thing independently, 

    then there are a ( b ways of performing both actions.

-  in general: if M1, M2, ..., Mn are pairwise disjoint sets, M ( M1 ( M2 ( ... ( Mn and 

    (M1( ( (M2( ( ... ( (Mn( ( m, then (M( ( n ( m.

Pigeonhole principle

(also Dirichlet principle, Drawer principle or Box principle)

-  if n pigeons are put into m pigeonholes, and if n ( m, then at least 1 pigeonhole must

contain more than 1 pigeon ( m holes can hold at most m objects with at most one object 

to a hole )

Inclusion-exclusion principle

-  we can count the size of the union of the sets A and B by adding (A( and (B( and then

    subtracting the size of their intersection: (A ( B( ( (A( ( (B( ( (A ( B( .

-  for the case of three sets A, B, C:

      (A ( B ( C( ( (A( ( (B( ( (C( ( (A ( B( ( (A ( C( ( (B ( C( ( (A ( B ( C( .
Variations

      -  arrangements where it depends on order

      -  variations of k-th class out of n elements:

          ordered k- fold choices out of n-element set ( ordered k- tuples )

-  without repetition:

V (k, n)   = n ( ( n ( 1 ( ( ... ( ( n ( ( k ( 1 ( ( ( n ( ( n ( 1 ( ( ... ( ( n ( k + 1 ( ( 
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            k...number of choices

            n...number of elements from which elements are chosen

-  with repetition:

V´(k, n)   = nk
                              0 ( k, n ; k, n ( Z 

            k...number of choices

            n...number of elements from which elements are chosen
Permutations

-  ( ordered ) arrangements of all n elements, where it depends on order 

-  n elements are selected out of n-element set ( all orders of the given n elements )     
-  variations where k = n 
-  without repetition:

P (n) =  
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            n...number of elements being ordered

-  with limited repetition ( Mississippi case ):

P´( r1,  r2, ..., rk ( ( 
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    1 ( k , rj ; k, rj ( Z

n ( r1 ( r2 ( ... ( rk
k ...number of sorts

n ...total number of elements being ordered

r1...number of elements of 1st sort

r2...number of elements of 2nd sort

rk...number of elements of k-th sort

Combinations

-  arrangements, where it doesn´t depend on order

-  without repetition:
· combinations of k-th class out of n elements:

k-element subsets of a given n-element set

C (k, n) = 
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                0 ( k ( n ; k, n ( Z

            k...number of elements chosen

            n...number of elements from which elements are chosen
-  with repetition:

· combinations of k-th class out of n sorts:

k-element sets of elements of a given n-sort set

C´(k, n) = 
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    0 ( k , 1 ( n ; k, n ( Z


            k...number of elements chosen

            n...number of sorts from which elements are chosen
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