SEQUENCES

( Jana Alexanderčíková, Veronika Schwarczová )

Definition: A sequence is each function f with D(f)⊆N0.
Notation: For sequences the notation x1, x2, xn is used instead of the usual notation x(1), x(2), 

x(n) for functions.
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T - does not have to be the whole set N0



but it has to be a subset of N0
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means a sequence with members y0, y1, …,y10

BASIC NOTIONS.

1. member ( term ) of the sequence 
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for example [4,3] ( x means: x4=3 ( x4=3 – member, 4 – argument, 3 – value )

Remark: The number of values does not correspond with the number of members.

2.   ways of determination of a sequence → according to functions ( sets of ordered pairs )

a) listing of all elements → ordered pairs, members

– can be used only for finite sequences

b) characteristic property of all elements ( members ) – often a formula

1) explicit – for the nth member of the sequence it is not necessary to know the preceding members
for example yn = 2n+1

2) recursive – for the nth member of the sequence it is necessary to know preceding members

for example Fn+1 = Fn+Fn-1, F1 = F2 = 1

FINITE SEQUENCES. INFINITE SEQUENCES.

Definition: A sequence is finite if its domain is a finite set ( if and only if a sequence has 

finitely many members ). A sequence is infinite if it is not finite.

GRAPH OF THE SEQUENCE.

- graph of the function: a set of isolated points
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PROPERTIES OF SEQUENCES.

· Monotone sequences ( a special case of monotone functions )

→ increasing function f: ((x1, x2)( x1<x2 ( f(x1)<f(x2) ), therefore

increasing sequence a: ((n1, n2)( n1<n2 ( 
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→ consequence: for each sequence 
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 the following holds:
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 is increasing (decreasing) if and only if ((n)(an<(>)an+1)

· Bounded sequence, maximum and minimum of a sequence
( again according to functions )

→ K(R is an upper ( lower ) bound of the sequence a: ((n)(an((()K)

→ ak = max
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: ((n)(an(ak), ak = min
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: ((n)(an(ak)

→ observation: if the sequence 
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 is increasing ( decreasing ) then

min (max) an = a1 ( clearly the converse implications are not true in general )

→ observation: if the sequence 
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 is finite then it has its maximum and

minimum

· Periodic sequence
→ definition: a sequence 
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 is periodic if there exist n0(N0 and k(N such that for each n>n0 the following holds: an+k=an.

The least k with this property is the period of 
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→ remark: the period of a constant sequence is 1.

· Sequences cannot be neither even nor odd.  
LIMIT OF A SEQUENCE.

( This notion refers only to infinite sequences, therefore the domain of indeces T is assumed to be infinite.)
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Definition: Let 
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 be a sequence of real numbers, let a(R be a given number. 

a = 
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a according to this definition is a proper limit of a sequence.

Definition ( improper limit ): Let 
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 be a sequence of real numbers.
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Definition: A sequence is convergent if there exists a(R which is the limit of this sequence. 


A sequence is divergent if it is not convergent.
Consequence: A divergent sequence either has an improper limit or has no limit.

PROPERTIES OF LIMITS OF SEQUENCES.

Theorem: Each sequence has at most one limit.

Proof: by contradiction:


If there exists a sequence
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with at least two proper limits a<b:
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 then all members of the sequence 
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 for n>n0(() are in the interval ( a-(, a+( ) and all members for n>n0’(() of the same sequence are in the interval ( b‑(, b+( ) ( a contradiction, since ( a-(, a+( ) ( ( b‑(, b+( ) = (.

The case of improper limit(-s) is analogical.
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Theorem: Limits preserve the operations
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( k(R … given constant ) under the conditions that all required limits exist and all the terms are defined.
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Theorem: For arbitrary sequences
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 the following holds:

if ((n0)((n>n0)(an(bn) and if a = 
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Warning: the implication ((n)(an<bn) ( a<b is not true in general!

Consequence: 
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Observation: If 
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Observation: If 
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then (
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Theorem: 1. If (n: an=c then 
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“Calculus with (” ( defined and undefined terms, for a,b,c(R, 0<a, -1<c<1<b ):

Defined:

Undefined:

(+a = (,    (–a =  (, (+( = (

(–(

 ((a = (, (((-a) = -(,  ((( = (

((0
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Remark: All these properties are the abbreviations for strictly finitary formulas


( formulas using no “infinity” ), namely formulas expressing particular properties


of sequences.

Observation: If 
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APPENDIX: CLUSTER POINT. 
Definition: Let 
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 be a sequence of real numbers, let a(R be a given number.

a is a cluster point of 
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( improper cluster point (, -(…analogically )
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Theorem: a is a cluster point of 
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A sequence has at least two distinct cluster points if and only if it has no limit.


If a sequence has a limit then the limit is the unique cluster point of this sequence.


Each sequence has at least one cluster point ( including improper cluster points ).

ARITHMETIC SEQUENCE.
Definition: Let 
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that ((n)( an+1 = an+d ). This d(R is the difference of 
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Observation: 
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 is an arithmetic sequence ( ((d(R)((n)( d = an+1 – an ). 

Summary: recursive formula

an+1 = an+d
explicit formula


   an = a1+(n-1)(d

formula for 2 members
       an – am = (n-m)(d

arithmetic average

   an = 
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sum of first n members

    sn = 
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GEOMETRIC SEQUENCE.

Definition: Let 
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that ((n)( an+1 = an(q ). This q(R is the quotient of 
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Observation: 
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Summary: recursive formula

an+1 = an(q
explicit formula


   an = a1(qn-1
formula for 2 members
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Observation: Each arithmetic sequence with the difference d is a subset of some linear 



function with the slope d.

Each geometric sequence with the quotient q is a subset of some real multiple 

of the exponential function qx.

INFINITE SERIES. GEOMETRIC SERIES.
Definition: Let 
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sn = a1+a2+…+an is the nth partial initial sum.


The infinite series 
[image: image89.wmf]å

¥

=

1

n

n

a

has the sum s if s = 
[image: image90.wmf]n

s

¥

®

n

lim

.
Definition: A series 
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A series 
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Consequence: A divergent series has the sum (, or -(, or no sum.

Theorem ( necessary condition for convergence of an infinite series ):


For each series 
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Warning: The converse implication is not true in general ( the condition is not sufficient! )!

Definition: Let for all n(N fn be functions.The convergence region C of the series 
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Definition: Let 
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Observation: a geometric series in general: 
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... for -1<q<1


= 1


... for q=1  ( but in this case sn = a1(n, s = a1(
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Theorem ( necessary and sufficient condition for convergence of a geometric series ):


A geometric series 
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